next up previous contents
Next: 2D: Two disk fits Up: Fits to artifical galaxies Previous: 1D: Single disk fits   Contents


1D: Alternative fitting function fits to artifical galaxies

Tables 14 and 15 A1-A2 and B1-B2 show the results of the 1D profile fits with the weighted and an unweighted Generalized Gaussian and Sérsic Law respectively. The artificial galaxy for the fit has the input parameters $\mu_{n-k}$ = 3, $f_h$ = 2.0 and $f_z$ = 4.0, with a truncation at 2.5$h_n$, depicting an ideal thick disk galaxy. Two $\mu_0-\mu_\textrm{\scriptsize cut}$ values are used: 7.4 and 8.4 mag arcsec$^{-2}$. We do this to compare the behaviour of the fit for different depths. $\mu_0$ is the central surface brightness.
What you see immediately is that there is rarely any difference between the $\chi^2$'s of both methods, showing they fit evenly well and that using either model suffices with the main differences the parameter results. There are significant differences between the $z_0$ values of the weighted and the unweighted Generalized Gaussian. A similar thing can be said for the Sérsic Law. At $\mu_0-\mu_\textrm{\scriptsize cut}$ = 7.4 the Sérsic Law shows a typical growing trend of a larger scaleheight with radius, as expected from the thick disk's larger scalelength. At $\mu_0-\mu_\textrm{\scriptsize cut}$ = 8.4 however, the scaleheight is decreasing with radius. There are also notable differences between the results of the weighted and the unweighted fit, which would not have been expected, as the artificial galaxies provide smooth profiles that are easy to fit. A profile and fit with the weighted Generalized Gaussian is shown in figure 8, A profile and fit with the weighted Sérsic Law is shown in figure 9. Both have $\mu_0-\mu_\textrm{\scriptsize cut}$ set at 7.4 mag arcsec$^{-2}$. In the inner part a stronger up-bending can been seen, while both fitting functions cannot reproduce the bending to the thick disk component very well.

Figure 8: Fit with the Generalized Gaussian to an artifical galaxy.
\includegraphics[width=7cm]{fp_gg.eps}
Figure 9: Fit with the Sérsic Law to an artifical galaxy.
\includegraphics[width=7cm]{fp_sl.eps}


TABLE 14

1D WEIGHTED ALTERNATIVE FITTING FUNCTION RESULTS


A1: WEIGHTHED GENERALIZED GAUSSIAN [#MATH266# = 7.4]
  [$''$] [mag/$\Box ''$] [$''$]  
(1) (2) (3) (4) (5)
0.1392 41.0 16.98 3.16 0.53
0.1342 46.0 17.11 3.42 0.53
0.1301 52.0 17.19 3.40 0.53
0.1244 58.0 17.30 3.42 0.53
0.1134 64.0 17.44 3.62 0.54
0.1081 70.0 17.55 3.63 0.53
0.1023 77.0 17.68 3.65 0.53
0.0959 85.0 17.82 3.67 0.53
0.0850 93.0 18.02 3.90 0.53
         

B1: WEIGHTHED SÉRSIC LAW [#MATH267# = 7.4]
  [$''$] [mag/$\Box ''$] [$''$]  
(6) (7) (8) (9) (10)
0.1383 41.0 15.95 33.47 1.86
0.1342 46.0 16.03 33.99 1.87
0.1296 52.0 16.11 34.60 1.88
0.1244 58.0 16.21 35.29 1.89
0.1134 64.0 16.35 35.46 1.86
0.1081 70.0 16.46 36.30 1.87
0.1023 77.0 16.59 37.26 1.88
0.0959 85.0 16.74 38.36 1.89
0.0850 93.0 16.93 38.99 1.87
         

A2: WEIGHTHED GENERALIZED GAUSSIAN [#MATH268# = 8.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.1669 41.0 16.97 3.01 0.52
0.1635 46.0 17.06 3.11 0.53
0.1635 52.0 17.15 3.11 0.53
0.1636 58.0 17.27 3.18 0.53
0.1581 64.0 17.39 3.26 0.53
0.1581 70.0 17.51 3.26 0.53
0.1581 77.0 17.64 3.26 0.53
0.1507 85.0 17.82 3.44 0.54
0.1507 93.0 17.99 3.44 0.54
         

B2: WEIGHTHED SÉRSIC LAW [#MATH269# = 8.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.1669 41.0 15.88 33.03 1.91
0.1635 46.0 15.98 32.77 1.90
0.1635 52.0 16.07 32.77 1.90
0.1635 58.0 16.17 32.77 1.90
0.1581 64.0 16.30 32.41 1.87
0.1581 70.0 16.42 32.41 1.87
0.1581 77.0 16.55 32.41 1.87
0.1507 85.0 16.74 31.96 1.84
0.1507 93.0 16.90 31.96 1.84
         

Notes: (1)(6) See Section 3.6 for the defitinion. (2)(7) Radial position of the profile. (3)(8) Central surface brightness. (4) Width of the distribution. (5) Shape parameter. (9) Halflight radius. (10) Power law index.


TABLE 15

1D UNWEIGHTED ALTERNATIVE FITTING FUNCTION RESULTS


A1: UNWEIGHTHED GENERALIZED GAUSSIAN [#MATH270# = 7.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.4426 41.0 16.45 1.44 0.44
0.4204 46.0 16.54 1.47 0.44
0.3964 52.0 16.65 1.51 0.44
0.3704 58.0 16.77 1.56 0.45
0.3390 64.0 16.93 1.71 0.45
0.3139 70.0 17.07 1.77 0.45
0.2875 77.0 17.22 1.84 0.45
0.2602 85.0 17.40 1.92 0.45
0.2289 93.0 17.62 2.12 0.46
         

B1: UNWEIGHTHED SÉRSIC LAW [#MATH271# = 7.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.4426 41.0 15.36 36.18 2.25
0.4204 46.0 15.45 36.79 2.25
0.3964 52.0 15.56 37.48 2.25
0.3704 58.0 15.68 38.27 2.25
0.3390 64.0 15.85 38.71 2.21
0.3139 70.0 15.98 39.66 2.21
0.2875 77.0 16.14 40.73 2.20
0.2602 85.0 16.31 41.93 2.20
0.2289 93.0 16.54 42.88 2.17
         

A2: UNWEIGHTHED GENERALIZED GAUSSIAN [#MATH272# = 8.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.5255 41.0 16.35 1.25 0.44
0.5252 46.0 16.42 1.23 0.43
0.5252 52.0 16.51 1.23 0.43
0.5252 58.0 16.61 1.23 0.43
0.5235 64.0 16.73 1.27 0.44
0.5235 70.0 16.85 1.27 0.44
0.5235 77.0 16.98 1.27 0.44
0.5150 85.0 17.18 1.36 0.44
0.5150 93.0 17.34 1.36 0.44
         

B2: UNWEIGHTHED SÉRSIC LAW [#MATH273# = 8.4]
  [$''$] [mag/$\Box ''$] [$''$]  
0.5255 41.0 15.26 34.72 2.29
0.5252 46.0 15.33 34.75 2.30
0.5252 52.0 15.42 34.75 2.30
0.5252 58.0 15.52 34.75 2.30
0.5235 64.0 15.65 34.65 2.29
0.5235 70.0 15.77 34.65 2.29
0.5235 77.0 15.90 34.65 2.29
0.5150 85.0 16.09 34.38 2.26
0.5150 93.0 16.26 34.38 2.26
         

Notes: See Table 15 for a description


\begin{sidewaystable}
\begin{center}
\textsc{TABLE 16}\\
\vspace{3pt}
\textsc{2...
...ial function and no truncation.}\cr
\end{tabular}\end{center}\end{sidewaystable}


next up previous contents
Next: 2D: Two disk fits Up: Fits to artifical galaxies Previous: 1D: Single disk fits   Contents
O.A. van den Berg 2006-09-05